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STAGNATION TEMPERATURE PROBES FOL USE AT
HIGIl SUPZERSONIC SPEEDS AND
ELEVATED TEMPERATURES

Prepared by:

E, 1. Winkler

ADSTRACT: OStagnation temperature probes with single platinum
or gold coated shields made of silica (or othér material of
low thermal conductivity) were built for use at high super-
sonic speeds and elevated temperatures, For free-strcam
Reynolds numbers of the order of 40,000 the temperature
recovery factor of the probes reaches ,996, It decrcases
with decreasing Reynolds number and increasing temperature,
At temperatures up to 800° X the major thermometric losses

of the probes are conduction losses, A single calibration
curve is obtained for each probe by relating the calibration
data to the flow conditions inside the probe, This cali-
bration curve facilitates the evaluation of flow data from
measured pressure and temperature data alone without resorting
to any assumptions. Small probes of 1 mm height at the air
ocntrance were successfully used for temperature surveys of

turbulent boundary layers on the nozzle wall of the aypersonic
tunnel, -
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This report presents results of the development of stag-
nation temperature probes for use at high supersonic speeds
and elevated temperatures, This prograi was initiated 1iu
1951 to obtain a temperature probe suvitable for the range

of flow conditions encountered in the NOL Hypersonic Tunnel
No. 4. The basic design and some results of the performance
of the probes were already reported in reference (a). The
complete program presented in this report includes investi-
gations of certain modifications in the design .- improve
the performance of the probes as well as to exte.d the range
in which they can be used,

The program was sponsored jointly by the U, S. Navy, Bureau
of Ordnance and the U, S, Air Force, It was carried out
under USAF MIPR AEDC-54-1 and Task NOL-M9a-108-1-54,

The author wishes to acknowledge the cooperation of
Messrs, W, L. Clark, H, Hoyt, and R, Garren in manufacturing
the probes. Mr, R, Garren also participated in the tests,

JOHN T, HAYWARD
Captain, USN
Commander

H, H., KURZWEG, Chief
Aeroballistic Research Department
By direction
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SYMDOLS

specific heat

specific heat at constant pressure

wire diameter

convection heat transfer coefficient

thermal conductivity
exposed length of thermocouple wire
Mach number

Nusselt number (th/k)'

static pressure

supply pressure

pitot pressure

Prandtl number (c /u/k)
p

gas constant

recovery factor

Reynolds number (p uD/u )
local temperature

stagnation temperature

equilibrium temperature for zero heat transfer
temperature indicated by probe

velocity
lenrsth
distance perpendicular to wall

v
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absorptivity
ratio of specific reats
emissivity
absolute viscosity
density
Stefan=Boltzmann constant

time constant

Subscripts

values based on free stream conditions

values based on conditions behind normal shock

values based on conditions inside probe

physical properties of gas

properties and conditions of shield around theimocouple
conditions of thermocouple support

properties of thermocouple wire

designates a reference value
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STAGNATION TEMPERATURE PROBES FOR USE AT
HIGH SUPERSONIC SPEEDS AND
ELEVATED TEMPERATURES

INTRODUCTION

1, Stagnation temperature probes suited for use at elevated
temperatures have been developed for temperature surveys in
the NOL 12 x 12 cm Hypersonic Tunnel No, 4.* Usually, tem-
perature probes for use at supersonic speeds arnd elevated
temperatures have two or more vented shields around the sens~
ing thermocouple (reference (c)). These shields serve to
direct the flow, maintain known flow conditions around the
thermocouple, and minimize the heat loss from the air sample
the temperature of which is to be measured, For boundary
layer studies in a wind tunnel a small probe, of the order

of l-mm height at the air entrance, is desirable in order to
obtain a sufficient number of data points through the boundary
layer. Such a small probe is easier to assemble, if built
with a single shield around the thermocouple,

2, Material and finish of the shields, length and diameter
of the thermocouple wires, as well as vent area and size

of the probe, are parameters affecting the temperature
recovery of the probe, It was felt that single-shielded
probes can be made to perform comparably to multiple-shielded
probes by proper selection of these parameters. This would
require, in particular, the use of a material of low thermal
conductivity for the shield and the thermal insulation of
shield and thermocouple support from the probe holder,

3. Some of the probes which will be described were made
rather large (6-mm outside diameter) to facilitate their han-
dling during preliminary investigations, These probes are
small enough, however, to obtain a number of data points in
the rather thick (about 20 mm) nozzle wall boundary layer of
the NOL Hypersonic Tunnel (reference (d)). Probes of l-mm
~height at the air entrance built during the course of the
present investigations were used for detailed surveys of the
temperature variations across the nozzle wall boundary layers,

Description of the Probes

4, All the probes investigated follow the same basic design,
as shown in Figure 1, The shield is made of silica or other
low~conducting material with both surfaces platinum or gold
coated to reduce conduction losses through the shield and
¥The hypersonic tunnel operates at Mach numbers between 5 and
10 at supply pressures up to 50 atmospheres and supply temper-
atures up to 800° K (reference (b)).

1
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radiation losses from the shicld surface to cooler surround-
ings. The shield is cemented to the stainless steel holder
with a thermally insulating cement*, Two vent holes provide
a continuous replacement of the air inside the probe., The
thermocouple is 30 or 3% gauge (Brown and Sharpe Gauge)
iron-constantan wirc, It is Fiberglas insulated and sealed
into a silica support with thermally insulating cement,

The exposed surface oi the support is also platinum or goid
coated, The various prches investigated differed as foilows:

a.  In the ratio ot vent-hole ares to entrance area

I, /-In the shield design

c. In the length of the thermoconple projection above
»'~it5'support

Each of the three parameters was varied separately, with the
other two kept constant,

5. Iach of the probes was tested over a wide range of flow
conditions, i.e, Mach numbers, temperatures, and Reynolds
numbers, These calibration data are expressed in terms of

a temperature recovery factor of the rrobe and are related

to either a free-stream Reynolds number or the flow conditions
inside the probe, The temperature recovery factor of the
prole is defined as

T, - Ty
To = Teo

(1)

r =

where the stagnation temperature, Ty, i8s set equal to the

arca=weighted average value of the supply air temperature
as obtained from a survey in the nozzle entrance duct
(reference (f£f)), and the free stream temperature, Te , is
calculated from compressible flow tables (reference (gS).
The range of Reynolds numbers that could be covered for
each Mach number is determined by the operational range of
the hypersonic wind tunnel, For each Mach number, the
supply tomperature sclected was high enough to avoid air
condensation in the wind tunnel test section; the supply
pressure was then varied so that the set temperature could
be maintained with the heater power available, Some data
were obtained for Mach numbers bhelow 4,9, These tests were
made in the NOL Aerophysics Tunnel No, G, which operates
continuously from atmospheric supply at Mach numbers up to 5,

*Technical 1. Copper Cemont (W, V=D Ames Company, Fremont,
Ohio) which is useful up to 1000° Kelvin (reference (e)).

2
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RESULTS

6. Detailed performance investigations werc nmade with a
circular probec of a vent-arca to centrancc-arca ratio of

1:5 and a thermocouple projection of 2.5 mm (reference (a)).
Figure 2 shows the calibration results at various ‘“lach
numl.ers plotted as a function of the free sircam Reynolds
number, which is based on the probe entrance diameter. Data
measured at low ilach numiiers arc not shown. They correspond
to Reynolds numbers above 406,000, Under these conditions
the recovery factor was constant and equal to .99%8. The

data presented in this form do not provide usaltle reference -
curves for the practical application of stagnation tempera-
ture probes, since Mach number as well as tcemperature seem

to be parameters affectinyg the displaccment of the calibration
curves, The variation of the recovery factor with tempera-
ture alone was investigated at a lMach number of 4.9, Threce
series of tests were made for the same range of Reynolds
numbers at threce different supply temperaturcs, Figure 3,

The overall shape of the curves in Figures 2 and 3 appcars

to be alike, For cach Mach number and temperature, the
recovery factor decreases with decreasing Reynolds number

and does so more rapidly as the temperature is increased,

The decrease is caused by the relative increase of the
conduction and radiation errors as compared to the convective
heat transfer, The thermometric losses have been estimated
using the relations for the radiation and conduction errors
given in the Appendix. It was found that for this specific
type of probe and at the temperatures involved, the major
losses are conduction losses, A numerical cxample is given
in the Appendix for the data in the lower portion of the

Mach number 7.6 curve (Figure 2). In this case approximately !
95 percent of the total losses are due to conduction, :

7. Since the deviation of thc measured temperature from

.the true stagnation temperaturc is essentially determined '
by the convective heat transfer from the air sample within
the shield to the sensing element, and by the temperaturc
losses experienced in the immediate surroundings of the
sensing element, the performance of the probe can be related
more adenuately to conditions of the flow inside the prole
rather than to any free-stream parameter, The temperature
recovery factor should then be a function of a variable
proportional to the convective heat transfer coefficient.
The analysis given in the Appendix suggests

k
r = 2 (Nuf) (2)
w

|
whrre the Nusselt number refers to the flow conditions inside h

3

S r— -




NAVORD Report 3834

the probe and is based on the wire diameter

Nu = h, g— (3)
g

If Nuk /k is the characteristic independent variable, a

single calibratlon curve should describe the performance of

a stagnation temperature probe recgardless of the free-stream
conditions at which the data were obtained., This is borne
out in Figure 4, which shows that the data of Figures 2 and 3
fall into a single curve if Nu k /k is used as the inde-
pendent variable,

8. For use of the calibration data as a reference curve, the
variable Nu kg/kw is an inconvenient term because it is

not rcadily computed from the experimental pressure and tempera-
turce data, A more practical variable is obtained by writing

the Nusselt number in terms of the Prandtl and Reynolds numbers
for the flow inside the probe (for details see the Appendix)

and expressing those and the ratio of the thermal conductivi-
tics as functions of the temperature and density. The other
factors involved are, for one specific probe,constant and can

be omitted, Thus

Kk
(tu Es)z ~ pgrr 3/t (4)

That P3/T, 3/4 is a good approximation for the independent

variable is illustrated in Figure 5, which shows the cali-
bration data of one probe (circular probe with L/D = 10,

Figure 4) plotted as a function of p3/T°

Effect of Vent Hole Size

9, The effect of the variation of the vent- to entrance-area
ratio on the performance of the probe was investigated with

a circular probe similar to that shown in Figure 7. Five
shields of identical shape and air entrance-area but different
vent hole size were used in conjunction with an otherwise
unchanged probe, The results of these tests are shown in
Figure 6, The temperature recovery factor of probes with

vent=- to entrance-area ratios of 1:4 and larger remained con- 5

stant %nd equal to ,998 for values of Nu k /k larger than
3x10, With decreasing vent- to entrance-area ratio, however,

4
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the probe performance becomes less desirable. The recovery
factor decreases with decreasing Nu kg,/ky, the decrease being

most pronounced for the probe with the smallest area ratio,

10, The flow Mach number inside the probe for all five shields
is low and varies between M = ,07 and .155. The recovery
errors can be considered still negligibly small, The decrease
of the probe performance probably can be attributed to increased
conduction losses; therefore, probes built subsequently have
vent- to entrance-area ratios of 1:4 or larger,

Variation of Shield Design

11, The three shield designs used are shown in Figure 7.
One is a circular shield with the entrance and the overall
shape circular, as described before. The second is a two-
dimensional probe* which has a shield made of steel with all
exposed surfaces gold plated, The air entrance as well as
the vents are narrow slots. In order to expose a sufficient
length of the 38 gauge thermocouple wire within the limited
enclosed space of the shield, the thermocouple is mounted in
cross-flow with the leads coming out on both sides near the
alr entrance where they are cemented to the exterior of the
shield on its narrow sides, The slender shape and the thin
walls of the shield permit measurements close to solid Lound-
aries (y =~ ,2 mm), At low total pressures (pj ~ 50 mm lig

and less), the mechanical performance of the probe is satis-
factory; however, with 1ncreasing pé the shield Legins to

deform and the temperature readings fluctuate widely, Wall
interferences with this rather wide probe and the deformation
of the shield “imited the measurement closest to a wall to

5 mm, The third probe has a circular shiecld with rectangular
alr entrance and is made of silica which is platinum coated,
The entrance is collapsed to a narrow slot of ,8 x 5 mm

inside dimensions; the vent holes are circular and are drilled
through the steel body of the shield support. A swivel
arrangement of the shield support provides for alignment of
the shield, Measurements can be made to .5 mm from a wall,

12, Comparative tests of the probes with the three shiecld
designs did not show any effect of .he shield shape on the
performance of the probe. In the temperature ranpge of the
investigations (up to 800° K) and with the shields carefully
insulated from their supports, thermometric losses due to

L]
*This probe was designed by M, Sibulkin, formerly at NCL but
presently at the Jet Propulsion Laboratory, Los Angeles,
California,
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conduction through the shield and radiation from their
surfaces scem to be negligible, This is illustrated by the
curve marked '"circular and two-dimensional" in Figure 8
which pgives the performance of both a silica platinum-coated
shield and the steel gold-coated shield,

Variation of Thermocouplc Projection

13. ¢Since the estimation of the thermometric losses of the
probes (see Appendix) indicated that the major losses are

duc to conduction in the thermocouple wires, increasing the
lenjrth~over-diameter ratio of the thermocouple wire above

the L/D = 16 of the original probe should result in improved
performance over a wider range of flow conditions, The L/D
ratio was increased up to 50, With the shorter projection
lencths a simple loop arrangement of the thermocouple was
used, For the longer projections, the thermocouple was

wound into a helix with its axis parallel to the probe axis,
vith increasing L/D ratio a constant performance is achieved
over a wider range of flow conditions, and also the decrease
of the probe temperature recovery factor with decreasing

Nu k /kw becomes less pronounced., A summary of the results

is piven in Figure 8,

Reduction in Size

14, Two probes, smallcr than mentioned before, were manufac-
tured, One, a circular probe, Figure 9, differs in its

design from that of the previously discussed probes in one
feature, A single vent hole is provided in order to simplify
assembly, Venting is done through a fine silica tube positioned
in the center of the =hicld support., The thermocouple wires
are cemented to the exterior of this vent tube, and this
arrangement is then sealed into the shield support which is
provided with holes of arbitrary size to release the air, The
other probe is a scaled-down version of the large rectangular-
round probe (Figures 10 and 11) but with an L/D ratio of 100,

15, The performance of the two small probes is shown in
Fipmure 12 together with some of the data of the large rectangular-
round probe (Figure €). For values of Nu kg/kw in excess

of .9~10'3, the performance of the small rectangular-round
probe is comparable to that of the larger probe, The increased
value of the probe temperature recovery factor is of a magni-
tude to be cxpected for an L/D ratio of 100, The performance
of the single=-vent probe, however, in the same range of
abscissa values, is less desirable than that of other probes
with comparable L/D ratios and vent- to entrance-area ratios,
The rather steep decrcasc of the rccovery factor of both small

6
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prcbes for abscissa values below .9 10 3 and 1,1 10 3,
respectively, cannot be explained by conduction errors
(radiation errors are pegligibly sm=all in either case)
unless a change in the flow condition inside the probes
invalidates the calculation of Nu kg/k' in the simple

fashion indicated in the Appendix.

Recommended Data Reduction Procedure

16, In the practical application of stagnation temperature
probes, local flow properties are determined from the measured
temperature, T;, the temperature recovery factor of the probe,

and the local Mach number as calculated from measured static
and pitot pressures, The local true stagnation temperature
To is calculated from the measured quantities using

T

1 | )

= §
r+(l-r) [1+—f—.:,—14|2]

which follows from the definition of the recovery factor
(equation (1)), Since the recovery factor to be inserted

in the above equation depends on the unknown flow properties
P and T, at the measuring station (equations 2 and 4),

- the following iteration process is applied, The density inside
the probe is replaced by pz/RTi, where Py, the pressure

behind the bow wave in front of the probe, can be computed
from the Mach number and the measured pitot essure, With
the recovery factor corresponding to pz/R'ri read from the

calibration curve, a To is computed by equation (5). This
To and & P 3 computed from pitot pressure and To are then

used in the second iteration. 1In all practical csses, however,
it was found that the first iteration already yielded T, -

values within less than 1 percent of its true value, which is
within the accuracy of the other experimental data,

/ To 3

Use of Probes for Turbulent Boundary Layer Surveys

17. 1In the investigations of the turbulent boundary layers
at the nozzle wall of the hypersonic tunnel (reference (d))
the probes with rectangular-round shields were used to
deter ine the stagnation temperature variation across the
boundasy layer, These data, together with measured static
and pitot pressures, made it possible to evaluate the static
temperature and the velocity profiles. The small height at

7
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the air entrance of these probes frcilitated the measurement
of temperatures in the laminar sublayer and the computation
of boundary layer parameters from the experimental data.

SUMMARY

18, Single-shielded stagnation temperature probes were
designed and constructed for use at high supersonic speeds
and elevated temperature, They were tested over a wide range
of flow conditions, 1,5 6 € 7.6, T, up to 800° K,

10% cn~! 6 Re /x £ 3 105 cn

19, V¥With the shield and thermocouple support made of siliea
(or other material of low thermal conductivity) and platinum
or gold coated on all exposed surfaces, the major thermo-
metric losses of the probee are conduction losses,

20, The performance of any one probe can be described by
a single calibration curve if the data are referred to the
flow conditions inside the shield, The characteristic
independent variable is Nu kg/k'

21, PFor large values of Nuk /k' the probe temperature

recovery factor reaches ,998, It docreases as Nu kg/k'
decreases, '

22, Vent- to entrance-area ratio, length to diameter ratio
of the thermocouple wire, and the physical arrangemesnt of
the vent holes are. parameters which affect the pertormance
of this specific type of probe, ‘

23, Best performance was found for vent- to entrance-area
ratio of 1:4 to 1:5, .

24, Use of a single vent hole positioned at the thermo-
couple support considerahly decreased the performance of the
probe,

25, With 1ncreasing length to diamoter ratio of the thermo-
couple wire, the probe attains a constant recovery factor
of ,998 for a wider range of Nu kg/kw. The decrease of

the recovery factor from its maximum value becomes less
proaounced,

26, The obtaining of a single calibration curve as a func-
tion of Nu kg/kw reduces the number of data needed to know

the performance of a probe for any range of flow conditions
(as long as radiation errors remain negligibly small),
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27. The use of the total temperature probe together with
static pressure and pitot pressure measurements, makes it
possible to evaluate flow data without resorting to
assumptions,

28. Probes of 1 mm height at the air entrance were
successfully used to determine the temperature variations
across turbulent boundary layers, and in particular to
obtain data in the laminar sublayer, These meagurements
were made in boundary layers of approximately 1 inch total
thickness in the Mach number rrnge S5 to 8.
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APPENDIX A
Estimation of Thermometric lLosses and Time Constant

1, The temperature indicated by a stagnation temperature

probe can be found from a balance of the heat transferred to

the sensing element by convection from the air sample within

the shield, the radiative heat exchange between the thermo-
couple and the surrounding surfaces (as given by the Stefan-
Boltzmann law), and the conduction heat transfer from the
thermocouple to its support and that across the shield wall,

This balance leads to an expression for the true gas tempera-
ture as the sum of the measured temperature and correction '
terms which account for the thermometric losses., A detailed O
discussion of the heat balance equation for bare-wire ‘ i
thermocouples in low velocity air streams is given in refer- ‘
ence (h), from which the following equation was taken '
(equation Cl13 in reference (h)). _

To = Ty +.8 [‘1 - Eg) = (1= &g g) (;':')4]+ (Ty - Tb)r% (A1)
where the terms
ﬂ[‘l = Eg) - Q- & q) (%)4] (42)
(T, - T,) 1-—?_‘—7; | | (A3)

rgg;esent the radiation and conduction errors, respectively,
w

B =T E, Ty, (44)

¥ = sech [(n 1?/Dk Y] (45)

11
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2. To apply the above equations to the calculation of the
conduction and radiation errors of a shielded stagnation
temperature probe, the following assumptions were made with
respect to the support and shield temperatures Tb and Td:

(a) T, = Ty; (b) Ty, the inside surface temperature of the

shield is identified with a temperature of a value between

the equilibrium recovery temperatures of the interior and
exterior shield surfaces, To obtain a numerical value for

T4, 8 heat balance like that underlying equation (Al) applies.

For the present case, the calculations can be simplified
because radiation losses from the platinum- or gold-coated
shields to the cooler wind tunnel walls are negligibly emall,
at least in the temperature range where the probes were used,
In addition, the conduction losses from the shield to the
probe support were neglected because the temperature difference
between shield and support can be azaumed to be small, and
also because of the thermal insulation used between shield

and support., The shield temperature was therefore determined
from an estimate of the forced convection heat transfer to the
inner surface and an assumed equilibrium value of the exterior

surface temperature of

Te = pri (T, = Ty ) + Teo (A6)

3. The time constant can be computed from the following
relation (equation Cl2 of reference (h))

D P_c /4h

R o v vy (A7)

With the help of the charts of reference (h), the thermometric
losses and time constants were determined, An example is
given for the following flow conditions and probe data:

Moo = 7.60 T, = 650° K

o = 10 atm Te = 560° K Flow Data
My = .08 '1'1 = 5999 K

P; * .108 atm Ty = 590° K |

D= .25 mm T, - T, = 510 k Frobe Data
L/D = 10 r = 915

€q = .75

12




NAVORD Report 3834

Radiation error:

/3= 18,8° K

AT, , = /3[1 - (1':')4] - 1,1° K

or 2 percent of the observed T, - T;

Conduction error:
% = ,845

- o
'ri Td s 9V K

ATcond - 1—-?—‘7- (Ti - Td) - 490 K

or 96 percent of obgserved T, - Ty

Time constant:
T = ,58 sec,

'The Independent Variable of the
Calibration Curve

5. The relative importance of the conduction losses in
comparison to the radiation error suggests that, .n a tempera-
ture range where the latter remains small, the temperature
recovery factor of the probe can be represented as a function
of the convection heat transfer coefficient h, and the

thermal resistance of the thermocouple wire D/k,
r =2 (he D/ky) (A8)

where h, refers to the heat transfer from the air sample

within the shield to the thermocouple wire, (A8) can be
derived from (Al) and (A5) if the radiation losses are
neglected and T, is set equal to the equilibrium recovery
temperature of the shield as given by (A6)., Expressing h,

13
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in terms of the Nusselt number of the flow inside the shield
h, = Nu ¢ (A9)

the argument of equation (A8) becomes

he E; = Nu ;s ~ (Al10)

6. For practical purposes, however, it was found more
convenient to express (Al0) in terms of the variable flow
properties }73 and T,, and to omit those factors which

are constant for one specific probe., Considering the thermo-
couple wires as cylinders in cross flow, the Nusselt number
is (reference (i)

Nu = const Re? prl/3 (A11)

where the Reynolds number is based on the wire diameter., With

us (J'R o)i My = const T, & m (A12)

T \.76 B
M = /‘ref (TfeLf) = const T(,'76 - (A13)

kgdrer (r=)™ 78
= (kg)res = const T, (A14)*

rer

*This form was recommended by E, R, G, Eckert

14
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we have
-.02
Pr = const T, (Al15)
-.26
Re = const PS 'ro (Al6)
and _
‘.14 .
Nu = const P:;i To (A17)

Finally, assuming that the thermal conductivity of the wire
is simply proportional to the temperature

ky = const T, (A18)

equatioh (A10) can be written as

k -
Nu Es = const }93} T, -36 (A19)

On the basis of this relation (103i To"36)2== )DS/Toa/4

is selected as the independent variable for plotting cali=-
bration data used as reference in the practical application
of the probes,

Notes on the Manufacture of the Probes
7. The following procedure was used in the manufacture of

the shields: A silica or Vycor* tube is first drawn to the
specified fine wall thickness, The section which is used for

*Vycor, (Corning Glass Works, Corning, New York) Trade name
for high silica glass, 96 percent 8102, 3 percent 8203,
1 percent oxides,

15
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the inlet is then drawn out to a fine tip and sealed off.
Positioning this piece vertically with the sealed end down,

a carbon mandrel machined accurately to the specified shape
of the shield is then inserted and the open end connected to
a good vacuum, By heating the section where the mandrel is
inserted, working gradually from the tip to the wider section,
the silica or Vycor collapses accurately around the mandrel,
After cooling the mandrel can be removed without difficulty.
The probe ends are then cut and fire-polished.

8. The vent holes were ground in the silica shields using

a jewelers lathe, the shaft ends of drills as the tools, and
a fine-grid diamond lapping compound, By carefully adjusting
the pressure applied while grinding, it was unnecessary to
£fill the shield interior with a wax mandrel, This aided in
aligning the vent holes.

9, The platinum plating was done with Liquid Bright Platinum
No. 05 (Hanovia Chemical & Manufacturing Company, Newark,
New Jersey) according to manufacturer's directions,

16
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